

ELLIPSOMETRY ELLIPSOMETER AND THIN FILMS

Dr. Gilles Benoit Massachusetts Institute of Technology, Cambridge, MA

Dr. Richard Sun

Angstrom Sun Technologies Inc., Acton, MA

* Principle
* Instrumentation
* Modeling
* General Applications
* Summary

PRINCIPLE On Spectroscopic Ellipsometry

Nature of the Light Waves

Light waves are electromagnetic in nature and require four basic field vectors to completely describe them.

- The electric-field strength: *E*
- The electric-displacement density: **D**
- The magnetic-field strength: *H* and
- The magnetic-flux density: *B*

Of these four vectors, the electric-field strength is chosen to describe the polarization state of light waves. It is because the force exerted on the electrons by *E* is much greater than by the magnetic-field of the wave when light interacts with matter. Once the polarization of electric-field vector has been determined, the other three vectors can be also determined based on Maxwell's field equations and the associated constitutive material relations.

Mathematic Description of Light Wave

For simplification, we consider a linearly polarized plane wave which propagates along the positive z direction and vibrates in the x-plane. The electric field of the wave can be written as:

where E_x is the x-component of the electric-field strength; ε is the dielectric constant; σ is the conductivity. ω (=2 π v) is the angular frequency, E_0 is the maximal value of the electric field strength.

 \tilde{N} is the complex index of refraction

$$\widetilde{N} = n - ik$$

$$\Rightarrow E_{x} = E_{0} \exp\left[i\omega\left(t - \frac{z(n-ik)}{c}\right)\right] \implies E_{x} = E_{0} \exp\left[-\frac{\omega k}{c}z\right] \cdot \exp\left[i\omega\left(t - \frac{zn}{c}\right)\right]$$

Damped Term

Undamped Term

Rolf E. Hummel: Electronic Properties of Materials, Springer-Verlag, 2nd Edition, 1997

Linearly and Circularly Polarized Light

The special cases of linear (a) and circular (b) polarization. In (a), the dashed line indicates the locus of the terminus of the electric vector E. In (b), L and R represent the left- and right-circular polarizations, respectively.

R.M.A Azzam & N.M. Bashara: Ellipsometry and Polarized Light, Elsevier Sci., New York, 1999

---- The extremity of its electric field vector describes an ellipse

(a) Elliptically polarized light; (b) decomposition of elliptically polarized light into two
(b) mutually perpendicular plane polarized waves P and S with a phase difference, Delta; R.W. Pohl, Optik und Atomphysik, Springer-Verlag, Berlin, 1958

- (1) Azimuth θ , which is the angle between the major axis of the ellipse and the positive direction of the P. It defines the orientation of the ellipse (-90° $\leq \theta <$ 90°).
- (2) Ellipticity e, which is the ratio of the length of the semi-minor axis and that of its semi-major axis. $e = a/b = Tan(\epsilon)$
- (3) Amplitude A, which is a measure of the strength of elliptical vibration. Its square is proportional to the energy density of the wave. A = $(a^2 + b^2)^{1/2}$
- (4) Handedness, which is used to describe wave propagation sense. Right handed clockwise; Left handed counter-clockwise when looking into the beam.

Plane of Incidence

Rolf E. Hummel: Electronic Properties of Materials, Springer-Verlag, 2nd Edition, 1997

P-polarization / S-polarization

Poincaré Sphere

Poincaré Sphere

R.M.A Azzam & N.M. Bashara: Ellipsometry and Polarized Light, Elsevier Sci., New York, 1999

The Poincaré-sphere representation of polarization. The longitude 2θ and latitude 2ϵ determine a point P_s that represents an ellipse of polarization with azimuth θ and ellipticity angle ϵ . The lines of longitude and latitude represent the equi-azimuth and equi-ellipticity contours, respectively. The correspondence between polarization states and points on the sphere is indicated.

Instrumentation

Typical SE Layout

 \mathcal{D}

Ellipsometer Classification

(Sample Handling)

PRINCIPLE, INSTRUMENTATION AND MODELING

On Spectroscopic Ellipsometry

Modeling

Model and Its Analyses

$$\rho = \frac{R^{P}}{R^{S}} = Tan\psi \cdot e^{j\Delta} = f(n_{i}, k_{i}, d_{i} \cdots)$$

2 Ellinsom

1. Fresnel Reflection Coefficients:

$$r_{ac}^{P} = \frac{\widetilde{N}_{c}Cos\Phi_{a} - \widetilde{N}_{a}Cos\Phi_{c}}{\widetilde{N}_{c}Cos\Phi_{a} + \widetilde{N}_{a}Cos\Phi_{c}}$$

$$r_{ac}^{S} = \frac{\widetilde{N}_{a}Cos\Phi_{a} - \widetilde{N}_{c}Cos\Phi_{c}}{\widetilde{N}_{a}Cos\Phi_{a} + \widetilde{N}_{c}Cos\Phi_{c}}$$

2. Snell's Law:

$$\tilde{N}_a Sin \Phi_a = \tilde{N}_c Sin \Phi_c$$

3. Ellipsometry Equation

4. Optical Constants

$$\widetilde{N} = Sin\Phi_a \sqrt{1 + \left(\frac{1-\rho}{1+\rho}\right)^2 Tan^2\Phi_a}$$

Air/Film/Substrate

Multi reflections between interface a/b and interface b/c
From the Fresnel coefficients at the interface a/b and b/c, the total reflection coefficients can be calculated as:

Analysis for Multilayer

- M films in structure
- Planar assumed
- Isotropic and homogenous
- Incident angle known

• Facts:

- M layers + one substrate
- M+1 interfaces
- Unknowns:
 - Each layer thickness (m)
 - Optical constants (n & k, 2m)

Ellipsometer Data:
One set of Ψ & ∆ at each wavelength

Reflection and Transmission at Interface

1. Fresnel Reflection Coefficients:

$$\begin{split} r_{(i-1)/i}^{P} &= \frac{\widetilde{N}_{i}Cos\Phi_{i-1} - \widetilde{N}_{i-1}Cos\Phi_{i}}{\widetilde{N}_{i}Cos\Phi_{i-1} + \widetilde{N}_{i-1}Cos\Phi_{i}} \\ r_{(i-1)/i}^{S} &= \frac{\widetilde{N}_{i-1}Cos\Phi_{i-1} - \widetilde{N}_{i}Cos\Phi_{i}}{\widetilde{N}_{i-1}Cos\Phi_{i-1} + \widetilde{N}_{i}Cos\Phi_{i}} \end{split}$$

2. Fresnel Transmission Coefficients:

$$t_{(i-1)/i}^{P} = \frac{2\widetilde{N}_{i-1}Cos\Phi_{i-1}}{\widetilde{N}_{i}Cos\Phi_{i-1} + \widetilde{N}_{i-1}Cos\Phi_{i}}$$
$$t_{(i-1)/i}^{S} = \frac{2\widetilde{N}_{i}Cos\Phi_{i}}{\widetilde{N}_{i-1}Cos\Phi_{i-1} + \widetilde{N}_{i}Cos\Phi_{i}}$$

3. Snell's Law $\tilde{N}_i Sin\Phi_i = \tilde{N}_{i+1}Sin\Phi_{i+1}$

4. Phase Factor

$$\beta_i = 2\pi (\frac{d_i}{\lambda}) \tilde{N}_i Cos \Phi_i$$

Ellipsometry Equations

Interface Matrix I (a &b)

Layer Matrix

$$I_{ab} = \begin{bmatrix} 1/t_{ab} & r_{ab}/t_{ab} \\ r_{ab}/t_{ab} & 1/t_{ab} \end{bmatrix} = (1/t_{ab}) \begin{bmatrix} 1 & r_{ab} \\ r_{ab} & 1 \end{bmatrix} \qquad L = \begin{bmatrix} e^{j\beta} & 0 \\ 0 & e^{j\beta} \end{bmatrix}$$

$$S = I_{01}L_{1}I_{12}L_{2}I_{23}L_{3}I_{34}L_{4}\dots I_{(m-1)m}L_{m}I_{ms} = \begin{bmatrix} S_{11} & S_{12} \\ S_{21} & S_{22} \end{bmatrix}$$

How to Set up MODEL?

.....

Layer Stack in SE Analysis

	Wavelength(nm)	N	K 🔺	
1	163.2	0.5251	2.1678	
2	163.6	0.5329	2.1739	
3	164.0	0.5403	2.1801	
4	164.5	0.5473	2.1865	
5	164.9	0.5538	2.1932	
6	165.3	0.5600	2.2000	
7	165.8	0.5658	2.2070	
8	166.2	0.5713	2.2142	
9	166.7	0.5765	2.2216	
10	167.1	0.5814	2.2292	
11	167.6	0.5861	2.2370	
12	168.0	0.5905	2.2449	
13	168.5	0.5947	2.2529	
14	168.9	0.5987	2.2612	
15	169.4	0.6025	2.2696	
16	169.9	0.6062	2.2781	
17	170.3	0.6098	2.2867	
18	170.8	0.6133	2.2955	
19	171.3	0.6167	2.3045	
20	171.7	0.6200	2.3135	
21	172.2	0.6234	2.3227	
22	172.7	0.6266	2.3320	
23	173.2	0.6300	2.3414	
24	173.7	0.6333	2.3509	
25	174.2	0.6367	2.3606	
26	174.6	0.6403	2.3703	
27	175.1	0.6439	2.3801	
28	175.6	0.6477	2.3899	
29	176.1	0.6516	2.3999	
30	176.6	0.6559	2.4099	
31	177.1	0.6605	2.4199	
32	177.7	0.6656	2.4299	
33	178.2	0.6711	2.4399	
34	178.7	0.6769	2.4499 🖕	
•	1			

NK Table

Mixture of Materials

Mixture of Materials

Mixture of Materials (Interface)

Mixture of Materials (Surface Roughness)

Physics for Mixture of Materials

Microscopic Property

Polarizability: α

Macroscopic Property

Dielectric Response: ε

Clausius-Massotti Equation

(N is the density of polarizable units)

$$\frac{\varepsilon - 1}{\varepsilon + 2} = f_a \frac{\varepsilon_a - 1}{\varepsilon_a + 2} + f_b \frac{\varepsilon_b - 1}{\varepsilon_b + 2}$$

Lorentz-Lorentz Equation

(f's are volume fractions for each polarizable components a & b)

Maxwell-Garnett Equation

a and b are in a host with dielectric constant of ε_h (Philos. Trans. R. Soc., London, 205,1906, 237)

 $\frac{\varepsilon - \varepsilon_{h}}{\varepsilon + 2\varepsilon_{h}} = f_{a} \frac{\varepsilon_{a} - \varepsilon_{h}}{\varepsilon_{a} + 2\varepsilon_{h}} + f_{b} \frac{\varepsilon_{b} - \varepsilon_{h}}{\varepsilon_{b} + 2\varepsilon_{h}}$

Effective Medium Approximation (EMA)

A.G. Bruggeman, Ann. Phys. (Liepzig) 24, 636 (1935)

The Bruggeman model is also called Effective Medium Approximation (EMA). In this model, the two media play exactly the same role. The effective dielectric function of the mixture is given by the second order equation :

The two materials plays the same role but they are in interaction. Each type of inclusion is in interaction with the medium (it is supposed nevertheless spherical, depolarization coefficient equal to 1/3).

Surface and Interface

R.W.Collins, et al., Thin Solid Films, 313-314, 1998, pp18-32

Direct and Non-Direct Technique

	XTEM		SE	
	SiO2	25 A	SiO2	24± 3A
	c-Si+a-Si	120 ± 20 A	c-Si _{0.82} + a-Si _{0.18±0.03}	119±19A
	c-Si	550 ± 50 A	c-Si _{1.03 ± 0.03}	511 ± 21 A
	a-Si	250 ± 50 A	c-Si _{0.21} + a-Si _{0.79±0.03}	270±30A
	c-Si		c–Si	
0·10µm			σ = 0.020	· · ·
	Direct Technique but NOT nondestructive		Not Direct Technique but Nondestructive, Quantitative and Inexpensive	
(a)	(b)		(c)	

Source: K. Vedam, Thin Solid Film14 (1998) pp. 1-9

SE vs SEM for Inhomogeneous Film TiO₂

SE Model		SEM Photo
Thickness (nm)	<u>n@1550nm</u>	
13.5	1.7211	an allow an an and and
424.42	2.2363	
66.71	2.2825	
Si Substrate		IIIIIIIIIII 500nm

Dispersion

Ц

UV Contribution **Dispersion:** - Isotropic - Anisotropic - Cauchy Anisotropic: - Sellmeier - Uniaxial X - Exponential - Uniaxial Y - Tauc-Lorentz - Uniaxial Z **IR** Drude - Drude - Biaxial XYZ -.... Absorption Band 1

Absorption Band 2

- Lorentz - Gaussian -

Absorption Band j

Dispersion (UV Contribution)

UV Contribution

Dispersion

$\varepsilon_{r} = P - (1/L_{o})^{2} \lambda^{2} / (1 + ((1/\tau)\lambda)^{2})$ $\varepsilon_{i} = (1/\tau)(1/L_{o})^{2} \lambda^{3} / (1 + ((1/\tau)\lambda)^{2})$

IR Drude

Note: P is the polarization, $1/\tau$ the mean free pass and 1/Lo the inverse of the plasma wavelength.

Dispersion (Absorption Bands)

Dispersion

- Lorentz

$$\varepsilon_{r} = A\lambda^{2} (\lambda^{2} - L_{0}^{2}) / [(\lambda^{2} - L_{0}^{2})^{2} + \gamma^{2}\lambda^{2}]$$
$$\varepsilon_{i} = A\lambda^{3}\gamma / [(\lambda^{2} - L_{0}^{2})^{2} + \gamma^{2}\lambda^{2}]$$

Note: A is the amplitude , Lo is the central wavelength and γ is the width of the band or peak.

Absorption Band 1

Absorption Band 2

 $\varepsilon_r = A \cdot imag(DoubleW(z))$ $\varepsilon_i = A \cdot real(DoubleW(z))$ $DoubleW(z) = (\exp(-z^2) \cdot erfc(-iz))$ $z = (1/L_0 - 1/\lambda)/\gamma$ Gaussian

APPLICATIONS

with Spectroscopic Ellipsometry

Applications

> Optical constants or dielectric constants for bulk materials

- > Optical constants and thickness for films
- > Surface, Interface and Composites
- > Alloy concentration determination
- > Real time monitoring for growth or etching kinetics study
- ➤ Band gaps
- > Porosity
- > Other properties derived from optical/dielectric constants

General Applications

• Materials:

- Metals
- Polymers
- Ceramics and Glasses
- Semiconductors and its Compounds
- Composites

Application Fields

• Semiconductor Industry: Photoresist, Gate dielectrics, Semiconductors and their alloys or compounds such as, SiGe, InGaAs, AlInGaAs

• Photonics

- Optical coatings
- Semiconductor compounds
- Functional films in Optical MEMS
- Data Storage
 - Diamond-like carbon (DLC)
 - Magnetic films
- Flat Panel Display (FPD)
 - Thin film transistors (TFT) stack
 - Conductive oxide: Indium Tin Oxide (ITO)
- Solar Cell Industry

Multilayer Dielectric Stack

Ц

Summary

Ellipsometry is a technique through monitoring the polarization state changes.

- It offers nondestructive way to accurately determine film thickness and optical constants
- Many types of ellipsometers are available in the market. The selection and use of ellipsometer are highly application-oriented.
- > SE has advantages over many other techniques.
- The ellipsometry is the <u>MODEL</u> based technique. It is not direct readout type instrument. Therefore:
 - It is critical to use the right model to get right results

Ellipsometry has many advantages over other techniques:

1. More *comprehensive* than any other tools: Optical, electrical, physical (or structural) and chemical (composition, bonding). All these information may be obtained from only one measurement.

2. Nondestructive compared with SIMS for composition

3. *Non-contact* compared with four-point probe for conductivity

4. *Non-contact* and no pattern needed compared with stylus profilometer for thickness

5. *No vacuum* requirement compared with all e-beam or ion-beam based instrument

Advantages – cont.

6. Ellipsometry is an *absolute* technique (no need of reference or standards)

7. Ellipsometry gives *twice* more information (both phase and amplitude ratio) than reflectometry (only intensity). In addition, as ellipsometer measures the polarisation state and not the intensity, it is less sensitive to light intensity fluctuations.

8. The phase information from ellipsometry is very *sensitive to surface* layers. Therefore, it is the best non-destructive technique for thin film characterisation.

Further Information Available

- www.angstec.com
- Info@angstec.com
- Phone: (978) 263-6678
- Fax: (978) 263-6675