PROPERTIES OF E-BEAM EVAPORATED TITANIUM OXIDE THIN FILM

Ping Hou Nortel Networks Co. Richard Sun Angstrom Sun Technologies Inc.

Presented at MRS Fall Meeting 2002 in Boston

ntroduction

NORTEL

WORKS

Deposition Chamber

NC RTEL NETWORKS

Deposition Process

NC RTEL NETWORKS

Table 1. Experiment Conditions for Structural Study

Deposition Rate (Å/s)	2.0
Chamber Pressure (Torr)	2.5×10⁻⁴
Anode Voltage (V)	130
Anode Current (A)	1.0

Table 2 Experimental Conditions for Stress Study

Deposition Rate (Å/s)	2.0	2.5	3.0
Chamber Pressure (Torr)	2.0 ×10 ⁻⁴	2.5 ×10 ⁻⁴	3.0×10 ⁻⁴
Anode Voltage (V)	100	130	160
Anode Current (A)	1.0	2.5	3.5

Model and its Analyses

NC RTEL NETWORKS

Analysis Model

NC RTEL NETWORKS

Spectra Fittings—Three Sub-Layer Mode

With the three Sub-layer model, the whole spectra can be successfully fitted for a as-deposited TiO_2 film, indicating a heterogeneous structure.

Graded Optical Constants of TiO₂ Film

Ellipsometry analysis shows the gradient refractive index from the film/substrate interface to top of the film. The typical values at 1550 nm wavelength are 1.721 (upper part), 2.2363 (middle part), and 2.2825 (lower part), respectively.

Microscope Observation

(a) SEM photo showing three sub-layers of an as-deposited TiO_2 film (left); (b) TEM photo for alternating SiO_2/TiO_2 multiple layers shows the same structure for TiO_2 single layer (right)

Chamber Temperature Variance

NETWORKS

It was the temperature variance that caused the structural discrepancy of as-deposited TiO_2 film.

Co-deposited TiO₂-SiO₂ Film

Ellipsometry analysis shows an excellent fitting for a co-evaporated TiO_2 -SiO₂ film with only one layer model simulation, indicating a homogeneous structure.

Surface Micrographs

NC RTEL NETWORKS

TiO₂ Film

Co-evaporated TiO₂-SiO₂ Film

SEM micrographs show (a) an as-deposited TiO_2 film (left) and (b) a TiO_2 -SiO_2 co-evaporated film (right). AFM analysis shows that the surface roughness of pure TiO_2 film and co-evaporated film are 19.6 and 9.3 nm, respectively.

i0₂ Film Stress Dependency

NC RTEL NETWORKS

Any process that can increase the film packing density will result in decreasing tensile stress, or increasing compressive stress. Therefore, low deposition rate, high-energy or intensive ion bombardment will produce more compressive stress for as-deposited TiO_2 films.

Summary

NORTE

- TiO₂ film stress can be tuned through properly adjusting the deposition parameters, especially anode current of the ion gun.
- Spectroscopic ellipsometry has been successfully used as a nondestructive technique to characterize the structural discrepancy of TiO₂ films.
- Three sub-layer model can be used to describe the heterogeneity of as-deposited TiO₂ films, which is caused mainly by the chamber temperature changes during the deposition.
- With TiO₂-SiO₂ co-deposition, a homogeneous film can be produced. At the same time, refractive index can be further tuned through controlling the ratio of TiO₂ to SiO₂ fraction in the film.

ACKNOWLEDGEMENT

The authors thank colleagues for SEM/TEM analyses and any other assistance